
f

N94- 36497

Fusing Modeling Techniques to Support Domain Analysis
for Reuse Opportunities Identification

Susan Main Hall
Eileen McGuire

Sof7"ech, Inc.

1600 N. Beauregard St.

Alexandria, Virginia 22311

(703)824-4561 FAX: (703)931-6530
email: shall@softech.com

I
!
!

I
!
!

!

g

l_

|
|

t

i
t

Functional modeling techniques or object-oriented graphical representations, which are

more useful to someone trying to understand the general design or high level
requirements of a system?

For a recent domain analysis effort, the answer was a fusion of popular modeling

techniques of both types. By using both functional and object-oriented techniques, the
analysts involved were able to lean on their experience in function oriented software

development, while taking advantage of the descriptive power available in object
oriented models. In addition, a base of familiar modeling methods permitted the group

of mostly new domain analysts to learn the details of the domain analysis process
while producing a quality product.

This paper describes the background of this project and then provides a high level
definition of domain analysis. The majority of this paper focuses on the modeling

method developed and utilized during this analysis effort.

Project Backc]r0und

The analysis work described in this paper was performed in support of the Software
Development Center - Washington, Army Reuse Center (ARC). Using functional

descriptions and design documentation of four Army software systems under

development and the Department of Defense Technical Reference Model, the
application support layer services, such as database services, network
communications, and the human machine interface, were studied. In addition,

technical references were used to support the development of the description for the

User-Machine Interface (UMI). The primary goal of the effort was to develop a
complete, understandable model of a genenc application support layer system. When
completed, this model was utilized to identify potential reuse opportunities between the

existing software and future system development efforts. The majority of the work

performed by the ARC and its supporting staff focuses on increasing software reuse in
the government sector.

1

PWB_IIX_4 l_4_ tK.IU_. NOT FIL*_O

SEWProceeding_ 323 SEL-93-003

Domain Analysis

Domain Analysis is the process of identifying the commonalities in a class of similar

systems [Priento-Diaz 90]. Domain analysis could be considered as requirements
analysis performed on more than one system. The activities performed during domain
analysis include collecting, organizing, analyzing and concisely capturing information
from systems which perform similar tasks. System specifications, requirements
documents, functional descriptions, design documents, and even users manuals can

provide the information needed for domain analysis. The key to successful domain
analysis is to have complete descriptions for at least three systems in the software
family being studied. At least three systems are needed in domain analysis in order to

obtain a non-system-specific view of the domain.

There are two ways to view a family of systems or domain: vertically or horizontally.
A vertical domain encompasses systems which perform the same system application.

For example, in Figure 1, Embedded Weapons Systems, Management Information

Embedded Manage me nt Comma nd

Weapons Information and Control
Systems Systems Systems
Domain Domain Domain

Figure 1 The Application Support Layer Software is a horizontal
sub-domain of many software domains.

SEW Proceedings 324 SEL-93-003

Systems and Command and Control Systems represent three high-level vertical
domains. A horizontal domain is an area of activity or knowledge that spans the

vertical application oriented domains. The Application Support Layer Software domain
is used as the example domain in this paper to describe the modeling

technique/procedure that has been performed by this analysis team.

Unlike other domain analysis methods, the analysis procedure this SofTech team
employs incorporates the concept of domain-oriented high demand categories and a

knowledge base of domain and system information to support the identification of

areas predisposed to reuse. The identification of reuse opportunities is a priority in
our domain analysis work. The analysis procedure utilized is also unique because of
the effective method of combining several modeling techniques that was developed

(see the section below for a detailed description of this fused modeling technique).
Note, although a thorough study of the application support layer services was

performed, the pictorial description captured was limited to include only a high level
illustration of the domain.

(_9mbining Multiple Modeling Te¢hniaues

Domain modeling is the process of capturing, in graphical form, the conclusions

resulting from analysis of a functional family of systems. Specifically, the operations,
data and data attributes need to be recorded in a clear, concise format. In general,

since object-oriented system descriptions make reuse opportunities easier to locate
[VVeesale 92], an object-oriented model was targeted to be the final product of the

analysis effort. Unfortunately, one of the greatest challenges our team faced was
striving to bridge the gap between systems that are still being functionally designed

and the advantages that object oriented technologies offer. Therefore, we also came
to the conclusion that a fusion of modeling methods was necessary due to the relative

immaturity of the available techniques [Weesale 92].

When comparing and contrasting the understandability of modeling techniques, we
have found that one modeling technique could not do the entire job well. Since the

development of an understandable generic Application Support Layer (ASL) model is
critical to its future use we decided to combine several very different modeling

techniques. Our new modeling process includes utilizing functionally oriented models,

moving into a functional hierarchical grouping model, and then transitioning into a set

of object oriented models. Specifically, we used data flow diagrams [DeMarco 78],
state transition diagrams, flow charts, hierarchical diagrams, and object models

[Coad/Yourdon 91, Rumbaugh 91].

Studying the ASL software began by creating sketches of and reviewing pre-existing
data flow diagrams, state transition diagrams, and flow charts from documentation
available on the completed Army systems. These functionally oriented diagrams were

SEW Proceedings 325 SEL-93-003

beneficial to our understanding the systems because of the analysis team's experience

in developing functionally oriented software. In addition, capture of the functionality of

an ASL in these types of diagrams was performed quickly, since the example systems
being studied had been developed using functionally-oriented methods. Both the
analysts' experience and the system development techniques supported the easy

understanding of the processes performed by typical ASL software.

High-level data flow diagrams provided the basis for the majority of the analysis work
on the processes of the ASL software. For example, Figure 2 is a data flow diagram

(DFD) of the primary functions performed by the ASL software, according to the
functional descriptions of one of the systems studied. Also, shown in the same DFD
are the general data flows between the functions. This type of diagram provided an
understanding of the basic activities performed by an actual ASL code module.

Perform

Utilities &

Services

Request to Appln

Layer SW Response

ApI:

Appln

Layer SW

Appln Layer ,er

User

System

User/Machine

Help
Servicq

Infom,"

Help

Translated

Response Response

_vide

COTS

,rface

tic COTS

COTS

Response Packages

Figure 2 High-level data flow diagram of the ASL functionality of

one of the systems studied.

4

SEW Proceedings 326 SEL-93-003

Further breakdown of the processes helped to define the specific functions performed,
the role of these functions, and the existence of hardware and system dependencies
in the ASL software. For instance, the process in Figure 2 called Perform ASL Utilities
and Services includes sub-functions such as: Manage Errors, Perform Execution

Management, Manage Report Requests, Perform Platform Services, and Handle

Interprocess Communication. Note, the last two sub-functions in the previous list are
examples of hardware and software dependent activities. Though complete DFDs
were not created for each of the processes described by each of the ASL systems
studied, select functions were analyzed in greater detail to clarify the data and specific

operations involved.

As with many analysis efforts, the most familiar functions proved to be the most

difficult to accurately model. State transition diagrams and flow charts were used
occasionally to focus the analysis team on actual processing activities and data

manipulation details, instead of letting the team rely on sweeping assumptions. In
some cases, functions were reviewed at a level of detail much finer than would be

captured in the final object-oriented model in order to avoid missing important

functionality.

Figure 3 shows an example flow chart of part of the analysis team's discussion on
how the ASL software provides the interface between the system user and the

!iiiiiii!iiiiiiii iiiiiii

Figure 3 A partial flow chart representing the level of detail
discussed for some of the components of the Application Support

Layer domain.

SEW Proceedings 327 SEL-93-003

machine. Though details on keyboard use do not define software, they did provide

some insight as to the specific software objects involved such as text, lines and
shapes. The group reviewed the physical activities (i.e. pushing a function key) to

pinpoint the associated software (i.e. the ASL commands that perform the specific
data manipulation). By exploring the operations performed by the ASL software, the

data objects in this hidden layer of software were identified which assisted in providing
a more complete picture for the final object-oriented models.

Moving from a functional model to a object model can result in losing important
information. Therefore, in an effort to minimize the impact, a third technique called a

functional hierarchical grouping model was applied. This home-grown technique is the
fusion between a functional model and an object model. The technique consists of

putting the identified functions of the system in a hierarchical model and then grouping

the lowest level functions together based on the objects being manipulated. For
example, in Figure 4 below, all functions involving the human interaction with the

computer system were grouped together to form the basis of an object oriented user
machine model.

.... • .. f

\J
Application

Support
Layer

j

Accept
User

Input

Display
Output

User Machine
Interface

Store

Data Reports

Database

Object

lib

FIGURE 4 Starting with

toward object oriented

functional modeling techniques and moving

techniques, a fusion of methods occurred.

6

SEW Proceedings 328 SEL-93-003

The first objective in producing the hierarchical model was to list all of the functions

potentially performed by an ASL. The word potentia/is used because the interfaces to
the ASL also, needed to be defined. Therefore, in this case, too much high-level
information is actually helpful. As the top-level processes were broken down into less

complex sub-processes, the specific functionality of an ASL became apparent.

Activities performed by the application layer or the hardware support layer were
removed from the hierarchical model. For instance, one of the analysis team's first

hierarchical models included all of the components shown in Figure 5 below, but

through a series of iterations several of the components were determined not to be a

required part by the typical ASL. Some of the components were hardware support
layer activities, like the network functions and some of the components were found to
be embedded in other components. The Help functions are an example of this; that
is, most of the time, software modules contain their own help files, since Help is so

application dependent. In addition, some components were raised in importance

based on further analysis. For instance, the Kernel Support sub-function Platform
Abstraction in the hierarchical model shown in Figure 5 became a primary area of

focus in the final object-oriented model.

!
Handle

Inputs

I
Interface

User&Machine

I
I

Handle

Outputs

Application

Support

Layer

-Keyboard -Screen
_se -Audio

.-Pen

--Screen

-Voice

I
Data

Comm.

Services

-Comm. Blk

-Msg. Blk
"Network

Mgmt. Blk

---Interprocess
Comm.

Information

Services

I
Data [
Mgmt.
Services

-DB I/F
"DBMS

Svcs. Blk

--.Report Mgr.

-String Utilities

I

Help

Provide ISystem Services

1
1

Language

Bindings

I
Kernel

Support

i

-o/s Blk.
--Worksm

Mgmt. Blk
--Network

Svcs.

--Execution

Server

Figure 5 A sample of a draft hierarchical model for the

Application Support Layer domain.

7

SEW Proceedings 329 SEL-93-003

One facet of understanding a system that the functional and hierarchical diagrams did
not illustrate very well was the commonalities across the different ASL subsystems.

This aspect of the system was depicted more accurately by using object-oriented
models. Object-oriented models pull all occurrences of the same data-type together,

grouping all attributes and operations. Details focus on the data instead of on the

functions. This permits code to be written with emphasis on the data being generic or
abstract. This data abstraction increases the reusability of the software components -

requirements architectures, design models, and code.

Three high-level object-oriented models created during this quick domain analysis
were the focus of reuse opportunities identification. These models were the Data

Base Management Systems model, the Platform Services model, and the User-
Machine Interface model. A simplified version of the Platform Services Object model

appears in Figure 6. Note, all data attribute and operation information has been
removed in this version of the figure to improve the readability of the model.

Message I
se Queue Prctocol

Application I Destin_ion _nt to D:rfn_:srY I

Communicates _a Print
Queuei Mo ,ageI [] I Rol

SPO,Cons(_ts of

I I
Is to T_o,

PlatformConfiguration

Defines

I Platform I

I !

I Input I [DisplayDevice Device

Spools to

Gets input from J

CompTsed of

.L

1

T_of

i Networkuration

Har0c°0YlIDevice
Network

J I

Figure 6 This is a simplified version of the Platform Services

Object Model which was used to identify the software's basic

functionality.

SEW Proceedings 330 SEL-93-003

Unlike traditional domain analysis efforts, the primary objective in developing these

domain models was not to explicitly define all the details of each of the primitive
functions in the domain. Instead, this effort tried to provide an overview of the data

relationships and basic interactions. By determining the general data manipulations of

a typical ASL, the categories of components which are critical to the functionality of
this domain were pinpointed. For example, as shown in Figure 6, specifics of the
network were not needed, but understanding the relationship of the network

configuration with the rest of the platform configuration proved very useful. The
interaction of the ASL and the hardware support layer provided the distinction between

potentially reusable software components and those hardware dependent components

which require code, for instance, to be system unique.

Full lists of the data attributes and operations were developed for each object in each

model. This permitted each object to be treated as a black box; that is, no further
breakdown into sub-objects was necessary to expose software functionality. One
case of this occurred with the object Platform. One of the operations associated with

the object Platform is Enable/Disable Security. This single operation highlighted the

importance current software development efforts place on security functions. Security
functions are embedded throughout many software products, at multiple software

layers. Though the Platform Services Object model does not provide further details of
security functions, the high demand that software developers have placed on this

category of software was not lost by this analysis team. Security functions were
considered as prime reusable component candidates.

Besides providing a visual representation of the domain to assist in reuse opportunity
identification, this process of integrating multiple modeling techniques offers an
additional benefit. Though the faceted domain analysis approach described by Prieto-

Diaz could have been performed to identify reuse opportunities, no product would
have been available for future reusable component development. Typically, domain

analysis is considered to be divided into two types:

O

O

Consumer-oriented associated with reuse opportunities identification, and

Producer-oriented associated with the creation of reusable components

[Moore-Bailin].

However, the object-oriented models and their supporting documentation produced by

the procedure described in this paper can be used as a basis for reusable
requirements models. All of the high-level information on the domain is available in
these models and many of the domain component details can gleaned from the

analysis process documentation. Therefore, the final object-oriented models produced

by this process not only meet current needs, but also some of those for future reuse

planning.

9

SEW Proceedings 331 SEL-93-003

Model and Reuse Opportunities Identification

The purpose of performing reuse opportunity identification is to facilitate reuse within
one or among several system development efforts. During reuse opportunity

identification, systems are evaluated and selected as candidates for reusing software
components in their development life-cycle (client systems) and/or for developing and
providing reusable software components to support the software development life-

cycle of other systems (donor systems). Each potential client and donor system's
schedule, language and functionality are studied. This information, along with data on

the organization's policies, reuse knowledge and experiences, reuse training, and any
other information that might facilitate or limit reuse is researched.

A system's schedule together with the high demand categories (HDCs) of components

included in a system are the most crucial pieces of information needed when trying to
coordinate reuse between compatible systems. HDCs are classifications of software
components that are defined as being a necessity or requirement of all the systems

that are in a particular domain. The HDCs are chosen by domain engineers using the
generic architectures and domain models resulting from domain analysis. HDCs may

be either functional or object-oriented in nature. For this reason, the study of the
system's functionality, as well as, the data or object-oriented aspects of the each

system involved in the reuse opportunities analysis is important.

This need of both functional and object-oriented views is where fusing modeling

techniques proved to be very beneficial. For example, the HDCs that evolved from
the domain analysis effort on the application support layer included process network

messages, manage data dictionary, user machine interface, and database
management system.

Once the analysis team had established the high demand categories from the domain
models, we had a basis from which to identify reuse opportunities. We then took the

potential client and donor system's schedules and identified which systems would be

the clients and which systems would be the donors. This schedule coordination is
critical to performing successful reuse opportunity analysis. The goal in this type of
analysis is to begin identifying the client-donor relationships as early as possible in the

client system's software development life-cycle (i.e. before requirements analysis, if

possible). This permits the software reuse to be planned into the client systems'
development schedule and thus, the largest cost benefits can be realized.

For systems which have similar software development schedules, if a client-donor
relationship is established early enough the systems can perform requirement analysis

or design development as a team. Then, one system could be chosen to write the
reusable code and donate it to the other. Or the systems could split the code

development effort and swap the highly reusable pieces before system integration
testing.

10

SEW Proceedings 332 SEL-93-003

After finding compatible systems according to schedule restrictions, the analysis team

took the products produced from the conceptual phase and/or the requirements from
the client system (depending on where the system was in the life cycle) and matched
them to the requirements and design of the donor system. The HDCs and the generic

models also guided this matching process by helping the analysts determine what was
reusable and what was application specific. Since the generic domain models

produced represent what is common (or reusable) among all systems in the ASL
domain the analysts using the models were able to quickly identify potential

opportunities for opportunistic and systematic reuse.

Summary_

The initial use of this fusion of modeling techniques resulted in the development of a

complete, understandable high-level object-oriented ASL domain model. Since that
time, the technique has been applied successfully to the analysis efforts of other

vertical domains including the personnel and budget domains. In most of these
efforts, this fused modeling technique was employed to permit a very fast high-level

domain analysis for the purpose of reuse opportunities identification. Since traditional
domain analysis can take several person years per domain, this quick process

(measured in terms of person months, not years) proved to be substantially cost
effective.

However, our experience indicates that using multiple types of modeling techniques

closely linked together should enhance traditional domain and system analysis efforts

in general. Multiple views of a software modules functionality permits easier
identification of reuse opportunities, quickly locates inconsistencies in system design,

and encourages the development of more complete, reliable software products.

3.1

SEW Proceedings 333 SEL-93-003

, �Is. Susan Main Haft is a Systems Consultant, Management, for SofTech,

Incorporated. She directs a technical group which supports the Army Reuse Center
through domain analysis, reuse requirements anslysis, reuse opportunities
identification, library donor component selection, and quality assurance of reusable

software components. Additionally, Ms. Haft has over eight years experience in

supporting DoD Ada technical development efforts. She has participated in
independent verification and validation, modeling, and development. Ms Haft holds a
Bachelors of Science degree in Computer Science and a Masters of Science degree

in Computer Science with Software Engineering concentration from George Mason

University.

Ms. Eileen M. McGuire is an Associate Software Engineer for SofTech, Incorporated.

She preforms domain analysis, reuse requirements analysis, reuse opportunities
identification, and library donor component selection. Ms. McGuire holds a Bachelors
of Science degree in Management Science (Computer Based Decision Support

Systems Option) from Virginia Polytechnic Institute and State University.

References

Biaha, Michael, "Models of Models," September 1991

Caldiera, G. and V. R. Basili, "Identifying and Qualifying Reusable Software

Components," IEEE Computer, Vol. 24, No. 2, Feb 1991, pp. 61-70

Coad, and Yourdon, Object-Oriented Analysis

Englewook Cliffs, N J: Yourdon Press/Prentice Hall, 1991

Coleman, Derek, Fiona Hayes and Stephen Bear, "Introducing Objectcharts or How to

Use Statecharts in Object-Oriented Design," IEEE Transactions on Software

Engineering, Vol. 18, No. 1, January 1992

Domain Analysis Guidelines, Draft, SoFl'ech, Inc., May 1992

DeMarco, T., Structured Analysis and System Specification. Englewook Cliffs, NJ:
Yourdon Press/Prentice Hall, 1978

Fiscal Year 1994 Reuse Opportunities Report, Final, SofTech, Inc., July, 30, 1993

Gomaa, H., L. Kerschberg, C. Bosch, V. Sugumaran and I. Tavakoli, "A Prototype

Software Engineering Environment for Domain Mcdgling and Reuse," 1991

lscoe, Nell, "Reuse - A Knowledge Based Approach," NASA Software Engineering

12

SEW Proceedings 334 SEL-93-003

Workshop Proceedings, December 1992

Jacobson, Ivar and Frederik Lindstrom, "Re-engineering of Old Systems to an Object-
Oriented Architecture," OOPSLA'91

Lubars, Mitchell D., "Domain Analysis and Domain Engineering in IDEA," IEEE 1991

McGarry, Frank, "Lessons Learned", NASA Software Engineering Workshop

Proceedings, December 1992

Moore, John M. and Sidney C. Bailin, "Domain Analysis: Framework for Reuse

Technical Report", Computer Technology Associates, Rockville, MD, 193

Patel, Sukesh, William Chu, Rich Baxter, Brian Sayrs and Steve Sherman, "A Top-

Down Software Reuse Support Environment," 1992

Prieto-Diaz, Ruben, "Domain Analysis: An Introduction," Software Engineering Notes,

Vol. 15, No. 2, April 1990

Prieto-Diaz, Ruben, "Domain Analysis for Reusability," Proceedings of COMPSAC

'87, pp. 23-29

Rumbaugh, James, Michael Blaha, Wiliam Premerlani, Frederick Eddy and William

Lorensen, Object-Oriented Modeling and Design, Prentice-Hall, Inc., 1991

Shumate, Ken, "BATCES Solution #1" an Object-Oriented Design from Functional

Requirements Analysis," ACM Ada Letters, Nov/Dec 1993, Volo XlII, Number 6, pp.
133-161

Tracz, Will, "Domain Analysis Working Group Report - First International Workshop on

Software Reusability," Software Engineering Notes, Vol. 17 No. 3, July 1992

Wessale, Bill, "Large Project Experience with Object Oriented Methods and Reuse,"

NASA Software Engineering Workshop Proceedings, December 1992

3.3

SEW Proceedings 335 SEL-93-003

Fusing Modeling Techniques to

Support Domain Analysis for

Reuse Opportunities
Identification

by
Susan Main Hall
Eileen McGuire SOFTECH, INC.

Project Background

(Army Reuse Center, Software Development Center-Washington)

Needed quick methodology to:

° Perform Domain Analysis
- Application Support Layer Services Domain

- Four Army systems currently under development

- Systems and analysts were functionally oriented

° Focus on Identification of Reuse Opportunities
- Object-oriented models make this process easier

SOFTECH, INC.

SEW Proceedings 336 SEL-93-003

Problem Statement

Which provide a clearer understanding of high
-level system requirements:

Functional Models

or

Object-Oriented Graphical Representations

SOFTECH, INC.

Domain Analysis

Process of identifying commonalities in a class of
similar systems

Embedded Management Command
Weapons Information and Control

SOFTECH, INC.

SEW Proceedings 337 SEL-93-003

Fusing Modeling Techniques

Since one modefing technique could not capture the
domain analysis completely, we:

• Started with FUNCTIONAL models

• Moved to a functional HIERARCHICAL GROUPING
model

• Transitioned into a set of OBJECT-ORIENTED
models

SOFTECH, INC.

Functional Models
III

• Bega.n by reviewing existing and creating new:
- data flow diagrams

- state transition diagrams
- flow charts

• Captured basic activities performed by the
actual Application Support Layer code module
being studied

• Overlaid each system on top of one another to
highlight commonalities and differences

SOFTECH, INC.

SEW Proceedings 338 SEL-93-003

Functional Models (continued)

CORE ASL FUNCTIONS Appln
Appln

Utilities & Layer SW

Servi

Rex ice Layer SW Response

System

Requ(
for Request for COTS COTS COTS

Help

Respons

COTS

INC.

Heirarchical Models

• Moving from a functional to an object model
can cause important information to be lost.

• So a home-grown technique was applied.

• This heirarchical technique consists of:

-listing the identified functions in a heirarchical tree

-grouping the lowest level :functions together based
on the objects manipulated

-dividing functions into those IN the domain and
those INTERFACING WITH the domain.

SOFTECH, INC.

SEW Proceedings 339 SEL-93-003

Heirarchical Models (continued)
I

SAMPLE OF HEIRARCHICAL
GROUPING TECHNIQUE

Application
Support

Layer

Accept Display
User Output Store

Data

User Machine
nterface Ob

Produce
Reports

Database
Object

III

SOFTECH, INC.

Object-Oriented Models

• Used to illustrate commonalities across
Application Support Layer sub-systems

• Grouped occurrences of same data-type
together

• Captured data attributes

• Assigned functions to data

• Provided level of data abstraction to

increase reusability SOFTECH,INC.

SEW Proceedings 340 SEL-93-003

SIMPLIFIED PLATFORM __
SERVICES MODEL _ Message

S_ntto I Queue

[_ Applicati°n IDestinati°n _nt t°

/ Cornm_nicatesvia i Print I

/ I Message I I__OJ. =.uP.___l

Object Oriented Models (continued)

I Protocol] Spools to

Con_'stsof Spc)Isto

[

I InputDevice I

Getsinputfrom t

Directory

Co,pains

[File J

T_
of

Platform r Network
Configuration Iconfiguration

De_ines

I Plaff°rm I Define

Com_sed of
I i i

I Display I IHardc°pl I work_- IDevice Device Net

I SOFT_

Reuse Opportunities Identification

Purpose: to facilitate reuse within one or
among several softare development efforts.

• During reuse opportunities identification,
systems are evaluated and selected as
candidates to:

- reuse software components in their software development
life-cycle (clients)

AND/OR

- provide reusable software components to support the
software development life-cycle of other systems

SOFTECH, INC.

SEW Proceedings 341 8EL-93-003

Models Assisted ROi

• Application Specific/System Unique components
were stripped away, using the functional and
heirarchical models.

• High Demand Categories were established, using
the domain models

- Functional

- Data-Oriented.

• Reusable software components were identified,
factoring in development schedules

- Requirements Architectures,
- Design Models,
- Code Modules,

SOFTECH, INC.

Summary

° Multiple views illustrate a domain more clearly

than a single modeling approach

° This fusion of modeling techniques approach:
- identified more substantial reuse opportunity candidates,

- completed more quickly than traditional domain analysis, and

- provided a basis for future developement of a reusable domain
model.

SEW Proceedings 342 SEL-93-003

